野島断層に産出する互層状の断層ガウジとシュードタキライトから推定される地震断層イベント

Seismic events inferred from the layering structures of fault gouge zone and pseudotachylites in the Nojima fault zone, Japan

Motoko Shigetomi* and Aiming Lin**

Abstract: Layering structures were observed in the fault gouge and pseudotachylyte zone from the Nojima fault, Japan, along which the M7.2 1995 Kobe earthquake occurred. The layering is characterized by intralayered fault gouge and pseudotachylyte layers (or veins) varying from submillimeter to 1 cm in thickness, in which there are no significant mixing and confusing between the layers. The petrological and structural characteristics reveal that: (1) both the fault gouge and pseudotachylyte veins formed by cataclastic crushing without frictional melting, (2) each thin layer of the fault gouge and pseudotachylyte recorded at least one seismic faulting event, and then the 15 cm-wide fault gouge zone including the pseudotachylyte layers recorded at least 18 seismic events, and (3) rapid seismic slip occurred in fault zone narrower than a few millimeters along the master fault plane. The structural observations and interpretations of the cataclastic veins provide insight into the faulting processes in fault zones during seismic slip at shallow crustal levels.

Key words: Nojima fault, pseudotachylite, fault gouge, layering structure, seismic slip

はじめに

本報告では、1995年兵庫県南部地震において淡路島に現れた野島地震断層の平林露出に互層状に産出す断層ガウジとシュードタキライトの組織構造解析を行うとともに、最近の地質時代における野島断層の地震断層イベントの推定を試みた。
平林露頭の概要

本研究で調査を行った平林断層は、平林断層面の北東延長部の高知の右岸（北東東）の斜面に現れた（Loc.1，第1図）。第2図に示すように地震断層は段丘堆積物上に基盤の花崗岩が堆積する形態で出現している。断層によって変位された最低位段丘面は現河床
部から約7mの比高をもっている。この試験面の正確な年代がわからなかったが、これより二段高いAT火山灰を含む低段試験面は2.5m垂直方向に変位しており、2万年前～完新世に形成されたものであるとされている（木野ほか、1990）ことから、この最低位段試験面は完新世後期に形成されたものと推定される。この最低位段試験面の基盤の花崗岩が鉛直4m以上衝上しているので、本点では古い段試験面ほど変位を大きく累積していたことが認められ、完新世にも複数回の地震イベントがあったと推定される。

第3図　平湖裏（第1図のLoc.1）の写真（a）と詳細スケッチ（b）。断層破砕帯は花崗岩側に形成されカタクリーサイト、断層角礫、断層ガウジおよびシュードタキライトから構成される。

断層破砕帯の産状

第3図に露頭の写真と詳細なスケッチを示す。花崗岩産層が固結した段丘砂礫層に衝上する形態で野島断層およびそれに伴う断層破砕帯が露出しており、断層面の走向・傾斜はN48°E、75°SEである。花崗岩側の断層破砕帯は主断層面から幅約15cmの断層ガウジと薄いシュードタキライトと断層角礫および数m以上のカタクリーサイトから構成される。
主断層面（1995年の地表地震断層面）に沿って肉眼で観察される断層ガウジとシュードタキライトとの互層は、数mm～3cmの断層ガウジと1～3mmの薄いシュードタキライトから構成されており、断層面に平行な面状構造が発達している。断層ガウジは幅1mm～数mmの灰色～黒灰色～黄褐色を呈する未固結の薄層と一部の弱固結した薄層から構成され、この薄層と厚層との境界面に沿って非常に割離しやすい。シュードタキライトはこの断層ガウジ帯中に挟まれており（第4図），黒色を呈しているので、肉眼でも断層ガウジと容易に区別することができる。断層角節は未固結で灰色～褐灰色を呈し、主断層面の近傍に幅約20～30cmで分布している。またクレーサイトは灰色～褐灰色を呈し、原岩である花崗岩の組織・節理性を明瞭に残している。

組織構造観察およびXRD解析

上記の平林露頭で互層状に産出する断層ガウジおよびシュードタキライトの定方位試料を採取し、光学顕微鏡・電子顕微鏡による観察、XRD解析を行った。第5図に断層ガウジ帯のXZ面で肉眼により観察された構造を示す。断層ガウジ帯とその両側に接続している段丘堆積物と断層角節帯との境界は非常にシャープである。断層ガウジ帯は断層面と平行な姿勢を示し1mm～数mm程度の薄い断層ガウジ層とシュードタキライトの互層から構成され、肉眼で観察できただけでも18枚が確認された。これらの互層は1枚1枚が紫や組織が明らかに違うもので非常にシャープな境界面で接している。シュードタキライトはガウジの互層と同様に断層面と平行にして約1～3mm幅で産出しており肉眼では4枚確認できる（第4b図）。周囲のガウジと較べ非常に固く、細粒・緻密かつ黒色を示しておりその図の違いは研磨の際に明らかであった。シュードタキライトを挟む断層面で灰色を呈する断層ガウジ帯中にはシュードタキライトの大小さまざまな角張ったクラスターが見られる（第5図）。シュードタキライトは非常に細粒・緻密で、肉眼でその組織構造を観察することができない。これに対して断層ガウジ帯では右横ずれの変位センサを示す非対称構造が観察される（第5図）。断層ガウジの層は未固結で、明るい色を呈している。

露頭スケールがサンプルスケールで観察された上述の互層状構造は顕微鏡下でも同様に観察できる（第6図）。断層ガウジ中にはシュードタキライトのクラスターが多量に含まれている（第6図）。シュードタキライトは周囲のガウジと比較して非常に細粒であるため光学顕微鏡下でも組織を観察することができなかったので、電子顕微鏡下で高倍率の観察を行った。第7図に示すように肉眼～光学顕微鏡下での観察と同様に
シャープな境界（境界は入組んでいるが、漸移して
いない）で接する互層状構造が見られる。間間の断層
ガウジのクラストと層鉱とシェードタキライトのク
ラストは非常に細粒であることが明らかである。
シェードタキライト層は板張ったクラストの集合体か
ら構成されている 90％以上が粒径 1 μm 以上のクラス
トである（第 7 b 図）。Lin（1994 a, b, 1999）に示され
るようなマイクロクラフトや円渦状クラフトなど溶融起
源のシェードタキライトに特有な組織構造はほとんど
観察されない。

この互層の断層ガウジとシェードタキライトの鉱物
構成と鉱物節を削べるため、RINT 2200 X 線分析装置
を用いて、断層ガウジとシェードタキライトそれぞれ
2 層（第 5 図に示した gouge-1 と gouge-2 および pseu-
dotachlyyte-1 と pseudotachlyyte-2）を 1 枚ずつ
剥がし粉末試料にして XRD の分析を行った。X 線分析
条件およびこれらのサンプルの粉末 X 線回折チャート
を第 8 図に示す。また、これと比較するため、野島
断層の断層ガウジの断層ガウジの X 線回折チャート
（林ほか，1998）を第 8 図に示す。断層ガウジとシュー
ドタキライトのサンプルは花崗岩サンプルとほとんど
同じ回折パターンを示している。一般に非晶質物質や
ガラス質のシェードタキライトの X 線回折チャート
の低角度側に幅広い盛り上がりバンドを示す（Lin，
1994 a, b）が、分析したサンプルのどちらにもこのような
反射バンドが認められない。

考 察

1. 野島平林のシェードタキライトの成因

断層成因のシェードタキライトは世界各地の多くの
断層で発見される（例えば，Sibson, 1975；Lin, 1994 a,
b, 1999），地震断層の「化石」として注目されている。
シェードタキライトは断層摩擦による塩融生成のもの
が多く研究されている（例えば，Philpotts, 1964；
Sibson, 1975；Austrheim and Boundy, 1994；Lin,
1994a, b, 1999; Lin and Shimamoto, 1998) が、断層摩擦破砕による粉砕起源ののもも報告されている (林ほか, 1994; Lin, 1996, 1997a; 1999). 粉砕起源のジュードタキライトは見掛け上融融起源のジュードタキライトに似ているが、その細粒基質部はほとんど細粒破砕物から構成される。粉砕起源のジュードタキライトと融融起源のジュードタキライトと地震時急激な断層運動により形成されるものであるので、ジュードタキライトの研究は地震断層運動のメカニズムの解明に重要な情報を提供すると考えられる。

本研究の調査地頭の南西側の平林断層崖の南西側の農道では黒色ジュードタキライト様岩の産出が報告されている (林ほか, 1995; 皆川ほか, 1995). このジュードタキライト様岩の細粒基質にはガラス質らしいものを急冷によるとと思われる開口性の割れ目が存在し、このジュードタキライトは断層の摩擦運動に伴って融融・急冷して形成されたジュードタキライトである可能性が高いと指摘されている (皆川ほか, 1995). しかし、本研究で観察したジュードタキライトのSEM像ではほとんどが非常に細粒な角張ったクラストの集合体であることが明らかである。また、マイクロライトや円盤狀クラストなどの融融起源のジュードタキライトに特徴的な組織構造は見られなかった。さらに、ジュードタキライトのXRD回折パターンは周囲の断層ガウジや花崗岩とほぼ同じ回折パターンを示し、融融起源のジュードタキライトに見られるようなガラスの存在を示す低角度の盛り上がりバンドは見られなかった。Lin (1994a) によると、
シュードタキライトには5～10%のガラス質の基質が含まれれば、X線回折チャートにこのような盛り上がりバンドが認められる。従って、本研究で分析したシュードタキライトは90～95%以上の母岩花崗岩の細粒クラストから構成されていることが明らかである。これらのことから、このシュードタキライトは断層運動時の摩擦焼結によって形成されたものではなく機械的な粉砕作用によって形成された細粒破砕物の集合体であると考えられる。

2. 震断層イベント

上述のように、互層状の断層ガウジとシュードタキライトは互いに非常にシャープな境界面で接している構造が肉眼、光学顕微鏡、電子顕微鏡のいずれにもよく観察される。これらの一枚一枚がそれぞれ1回の断層運動を示しているかは明らかでないが、1回の断層運動でこのような焼き結の違いを示す形を示したように互いに非常に色やレノリューションの違うシャープな境界を示す断層ガウジおよびシュードタキライトの層が複数枚形成されるとは考えにくい。また、今回の地震により乱された断層面沿いの断層ガウジの厚さはわずか数mmである（水本ほか，1995；林，1996）から考えても幅15cm断層ガウジ層は今回の地震の以前に複数回の地
断層ガウジとシュードタキライトの粉末X線回折パターン。core gouge: 小倉地点500m配列コース中の花崗岩断層ガウジ（林ほか、1998）、host granitic rock: 母岩花崗岩、fault gouge-1とfault gouge-2およびpseudotachylite-1とpseudotachylite-2のサンプル位置は第5図に示す。Qz: 石英、Pl: 銀鉛、Bi: 黒雲母、Cl: 緑泥石。

震断層運動イベントにより形成されたものであると推定される。さらに、今回の地震断層摩擦により主断層面からわずか数mm程度の断層ガウジのESR信号が影響されることが明らかである（Fukuchi and Imai, 1998）。これも一回の地震断層運動イベントにより影響される断層ガウジの幅は数mmであることを示している。一枚の断層ガウジまたはシュードタキライトは複数回の地震断層運動により形成される可能性があると考えられる。これは、上述したように、シュードタキライトと接続した断層ガウジ断層は大小さまざまなシュードタキライトのクラスター含まれており、これにより、これらのことは、この断層ガウジとシュードタキライトの一枚一枚がそれぞれ少なくとも1回以上の地震断層運動を経験していると推定される。平林地点では少なくとも18枚の断層ガウジとシュードタキライトの互いを確認できる。この幅15cm断層ガウジ帯が少なくとも18回以上の地震断層イベントを記録したと推定される。また、一枚一枚の断層ガウジとシュードタキライト断層は幅1mm～数mmであることから、1回の地震断層すべりゾーン（slip zone）は幅数mmであると考えられる。

1995年兵庫県南部地震後。最近の地震時における活動層の活動史や運動像を解明するためのさまざまな試みがなされてきた。地震後の調査では、例えば断層の細部構造や断層ガウジに取り込まれた変化した草の根の**C年代測定（林、1996）やトレント
の調査結果（鈴木ほか，1995）により，野島断層が元新世において1995年より前に少なくとも1回の地震断層イベントがあったと推定される。また，前述したように，平林の露頭で観察される段丘の構造変位からも元新世に数回の地震イベントがあったと推定される。従って，野島断層は，2万年前〜元新世に地震の震源断層として繰り返し活動していることが明らかである。未固結の断層ガウジは地殻の比較的淺い部分（<4 km）で形成されるものと考えられ，本研究の平林露頭に産出する断層ガウジとシュードタキライとの互層は比較的新しい地質時代にできたものであると考えられる。

本研究で成層断層面に沿って生じる高圧地震性すべりに伴った断層ガウジ・シュードタキライの互層状構造および地殻浅部に生じる大地震時の主断層内すべきの脈状カスタミナ断層岩とスリップゾーンの研究は理論的なシミュレーションおよび実験を結び付ける橋として地震性断層破壊のプロセスを明らかにすることが可能であると考える。

まとめ
以上をまとめると，平林露頭の断層ガウジとシュードタキライの研究から次の3点を結論とすることができる。
1）平林露頭に産出するシュードタキライは内縦解析や電子顕微鏡観察から，断層運動時の摩擦融解によるものではなく地震断層運動に伴う粉砕作用によって形成されたものであると推定される。
2）シャープな境界面を持ち，互層状に産出する断層ガウジとシュードタキライの一枚一枚がそれぞれ1回または数回の地震断層イベントを経て推定される，幅15cm断層ガウジ帯は最近の地質時代に平林地点で少なくとも18回以上の地震断層イベントを記録していると考えられる。
3）1回の地震断層のスペリゾーンの幅は数mm以下であると推定される。

謝辞
現地調査において，神戸大学大学院生丸山正氏にご協力頂いた，神戸大学理学部宮田隆夫教授にご教示を頂いた。在学中の大友幸子，小林健太氏には，本稿を改善する上で有益なコメントをいただいた。以上の方々に深くお礼申し上げる。なお，本研究にあたりて文部科学省科学研究費補助金（基盤研究C，課題番号0940544）の一部を使用した。

文 献
林 愛明，1996，断層の微細構造からみた野島断層の運動像，構造地質，no. 41，17-29.
林 愛明・井上裕・宇田進一・飯沼清・三沢隆治・吉田浩志・村松保光・和田卓也・川合功，1995，兵庫県南部地震により淡路島に生じた野島地震断層の調査，地学雑誌，104，113-126.
林 愛明・松田時彦・崎本利之，1994，兵庫県阪神・淡路断層沿いに産出するシュードタキライ：粉体起源のシュードタキライ？構造地質，no. 39，51-64.
林 愛明・宇田進一，1996，野島地震断層のセグメンテーションと断層破壊プロセス，地質，48，375-386.

1995, 須賀川原・海・増野正夫・大友淳一・中村教博, 野島断層の性状, 地質調査所. 56, 54–63.

水野清秀・服部 仁・冨川 俊・高橋 浩, 1990, 明石地域の地質, 地域地質研究報告（5万分の1地質図編）, 地質調査所, 90 p.

