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Introduction

In this paper, we explain the differential ge-
ometry description of continuum mechanics
paid attention by theoretical geosciences in
recent years (e.g., Yamashita and Teisseyre, 1994
; Teisseyre, 1995 ; Takeo and Ito, 1997 ; Yamas-
aki and Nagahama, 1999a ; Nagahama and Tei-
sseyre, 2001). To explain the theory concisely,
we do not expand the general frame of the
theory. Instead, we take up the concrete phe-
nomenon described by the well-known equation
such as the rheology of rocks described by
Orowan’s formula :

E=pbv (1)
where € is strain, p is scalar density of disloca-
tions, b is Burgers vector and v is velocity of
dislocations. The purpose of this paper is to
derive Orowan’s formula from a viewpoint of
the differential geometry.

Differential geometry description
of defect field

One of the most famous correspondences be-
tween continuum mechanics and differential ge-
ometry is the definition of strain that is given by
the difference of metric tensors : &;=(0;—gi)/2.
It has been a center problem in differential ge-
ometry analysis of continuum mechanics to
extend this correspondence even to the defect
field. In this section, we explain concisely this
result by considering the virtual circuit in crys-
tal lattice.

Consider the closed curve : A—B—=C—>D—A,
where A=A (u), B=Au-+du), C=Au+du+du-+
6du), D=A(u-+6u) and dou==dbdu (Fig. 1(a)). We
map point A to the Euclid tangent plane in point

C along the curve : A—B—C as follows

A+dA+S65(A+dA).
A>B B>C

Next, we map point A to the Euclid tangent
plane in point C along the curve : A—=D—C as
follows

A+S6A+d(A+6A).
[ [N —7
A—D D—C

Therefore, when we map point A to the Euclid
tangent plane in point A again along the closed
curve : A—>B—C—D—A, we obtain (Fig. 1 (b))

A+dA+6(A+dA) —(A+6A+d(A+6A))

A—B—C Cc—b—A
=0dA —dS6A=4A. (2)

Now, when the base vector is set to be A; we
obtain dA =A;du'. Because dA,is also vector and
dA—0 for du'—0, it can be expand by using base
vectors as follows : dA;=1",du*A;, where I'’;, is
affine connection. In this case, (2) becomes
AA=6dA —d6A =06(A;du’) —d(A;0u’)

= (6du'+TI'"dw ou*) A;— (dou'+ Ty 6w du*) A,

=Ty dw' Su* A,
Because ', =I"%; in Euclid space (or Riemann
space), the discrepancy, 4A, is zero. On the other
hand, in the space with torsion, we have I"',—
Iy=2I =25 #0, where S, is called torsion
tensor. Therefore, the discrepancy is expressed
as

AA =S e dy, A; (3)
where d X, (=emjdu’'éu*/2) is infinitesimal area
enclosed with closed curve. &% is Levi-Civita
tensor. We have &*=0 whenever two of the

indicies coincide, and otherwise is given by &%
==*1ifsgn (k,u,v)=Tt1. For instance, e''?=0, ¢'®
=1 and €= —1. The discrepancy vector in the
direction of [ is given by
AA=S"em*dl, (4)

In crystal lattice, we can obtain similar dis-
crepancy called Burgers vector. The curve that
closes in a perfect lattice (Fig. 1(c)) does not
close in the lattice where the dislocation exists
(Fig. 1(d)). (When strictly saying, the discrepan-
cy is defined by the naturalization in which
non-Euclid material space with dislocations is
mapped to Euclid material space without dis-
locations (Fig. 2).) This discrepancy increases in
proportion to the dislocation density and the
area enclosed with the curve. Therefore, Bur-
gers vector, b, is given by the product of disloca-
tion density tensor, ™, and infinitesimal area
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Fig. 1 (a) Consider the closed curve ABCDA in the space
with torsion. The area enclosed with this closed curve is
infinitesimal enough, and we set AB=CD=d and BC=DA
=0. (b) When this closed curve is mapped to the Euclid
space, it does not close as shown in this figure. This is a
result of the path dependency in the space with torsion,
that is, the mapping result is different according to
whether the path ABC passes or the path ADC passes even
if the destination is the same point C. (c) In the perfect
crystal where the dislocation does not exist, the closed
curve can be drawn in an arbitrary region. (d) When the
dislocation exists, there is a region where the closed curve
cannot be drawn. This quantity of the discrepancy is
called a Burgers vector.

enclosed with the curve, do, :
b'=a™do,. (5)

First and the second index of a™ is the direction
of dislocation line and Burgers vector, respec-
tively. Therefore, if [=m, a™ is a screw disloca-
tion density, and if [#m, a™, is an edge disloca-
tion density. From the comparison between (4)
and (5), we can obtain the relations such as 4A'<
b, Spemt<a™ and dX,<>do,. In a word, the
dislocation density is expressed geometrical by
the torsion of the material space.

Geometrical description of dislocation density
was derived by the mapping of the point. Next,
we consider the mapping of the vector (Fig. 3(a))
in order to derive the geometrical description of
disclination density. Here, a disclination is a
generic name of rotating defects (a dislocations
is a generic name of translational defects.). By
the similar procedure to derive (3), we have

AA;=6dA;—d6A; =R du*ou" A; (6)
where Ry (Z0w ' —0p I+ T Tl —T 50T )
is curvature tensor (Fig. 3(b)). In crystal lattice,
we can obtain similar discrepancy of vector
called Frank vector. In the parallel shift in the
perfect crystal, the direction of the vector turns
to the same direction in the starting point and

Naturalization
2 4 2 4

Y
b Burgers
< vector

1

Fig.2 Consider the material space with a dislocation.
First, take out the element that is small enough to be free
from the dislocation. Second, the element is transformed
elasticity to the eigenstrain-free state by cutting off from
the surrounding and releasing it from the constraints of
the surrounding. Finally, we reconstruct the material
space by using these eigenstrain-free elements. This
virtual process is called naturalization. Geometrically, this
process is equivalent to the mapping of the non-Euclid
space with torsion into the Euclid space. Burgers vector is
defined as the discrepancy due to the naturalization.

the terminal (Fig. 3(c)). On the other hand, it is
not for the same direction when the disclination
exists (Fig. 3(d)). This discrepancy of the vector
direction is called Frank vector. This discrepan-
cy is proportional to the disclination density and
the area of the closed surface as well as the
Burger vector. In addition, it is also proportion-
al to the size of the vector. Then, we have

fi=0/mA.dX, (7)
where f;is Frank vector, 6™ is disclination den-
sity. From the comparison between (6) and (7),
we have ™" Riy,<>0/™, that is, the disclination
density is expressed geometrical by the curva-
ture of the material space. In the ordinal analy-
sis, the degenerated disclination density, &:,,0,”
=0y, is used.

Neither the dislocation density nor the dis-
clination density are independent as known in
the analysis of the liquid crystal. Next, we
consider what kind of form the relation should
be. The point of the above-mentioned analysis
was to have expressed the physical quantities
such as dislocations and disclinations by the
geometrical quantity such as torsion and curva-
ture of the material space. The curvature and
the gradient of the torsion are in not independ-
ence but the following relations :

Rpea1=01pS%a) (8)
where we ignore the higher order terms of the
affine connection. (8) is called the first Bianchi
identity that is one of the basic relation in the
differential geometry. The substitution of S%y4
e’=q" and e*’R%.,=0," into (8) leads to

0, =0 a™. (9)
This means that the divergence of dislocations
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Fig.3 (a) Consider the parallel shift of the vector along
the closed curve in the space with curvature. (b) When
this closed curve is mapped to the Euclid space, the
parallel shift of the vector is accompanied by the
discrepancy in the terminal point. (c) In the parallel shift
of the perfect crystal where the disclination does not exist,
the direction of vector turns to the same. (d) When the
disclination exists, the direction is not the same. This
discrepancy of the vector direction is called a Frank
vector.

is accompanied by disclinations. Disclinations
does not exist in the ordinal material, so we have
the well-known preservation law of the disloca-
tion : 0,a”*=0. Note that (9) is only the physical
expression of the basic relation in differential
geometry (8).

Orowan’s formula and Cartan’s structure equa-
tion in Four-dimensional material space

The first Bianchi identity (8) can be derived by
the Cartan’s structure equation. Abstract ex-
pression of this equation is

(torsion tensor) = (differential operator)

(metric).

Because the torsion and the metric corresponds
to dislocation density and strain, this becomes

aif:e”‘lakﬁf. (10)
For detailed proof, refer to Yamasaki and Nag-
ahama (1999 b) etc. (10) mean that the dislocation
density is given by the rotation of the strain. If
the distortion is integrable, it is given by the
gradient of the displacement, then we have a’=
e*9,0u'=0, that is, the dislocation density van-
ishes. In other words, the dislocation density is
given by the non-integral term (non-holonomy
term) of the strain. In the same way, the dis-
clination density is given by the non-holonomy

term of the bend-twist that is the gradient of
rotational displacement. (In Taylor-Bishop-Hill
model, all the non-holonomic terms vanish.)

Because () is the basic equation in describing
dislocation field, it plays an important role in
condensed matter physics (e.g., Edelen and Lag-
oudas, 1988 ; Kleinert, 1989), seismology (e.g.,
Yamashita and Teisseyre, 1994 ; Takeo and Ito,
1997) and geodesy (e.g., Yamasaki and Nagah-
ama, 1999a). However, (0} does not include the
effect of time, so we cannot derive the evoluti-
onal equation such as Orowan’s formula (1).
Then, in this section, we try to add time base to
the coordinate system where the dislocation
field is described. As known by special theory of
relativity, if the velocity of light is multiplied by
time base, it becomes the dimension of the space,
so the spacetime can be described as the four-
manifold. Similarly, by multiplying the velocity
of elastic wave by time base in the material
space, the four-dimensional description of defor-
mation field becomes possible. In the dislocation
field, the dislocation current corresponds to the
velocity, so we have

D'=FNdTH+da (1
where D; is the four-dimensional dislocation 2
-form, I(=I',dx?) is the dislocation current 1
-form, a/(=a'4dS?) is the dislocation density 2
-form and A is the wedge product. In this paper,
we do not go deep into the explanation of the
differential formalism. For detailed proof, refer
to Edelen and Lagoudas (1988). In the same way,
we can define the four-dimensional distortion
(strain):

B'=V'ANdT+g (12
where B'is four-dimensional distortion 1-form, v/
is the velocity 0-form and B{(=p'xdx") is the
distortion 1-form. It is followed from (l0) that the
differentiation of distortion is accompanied by
the dislocation density. Then, we derive four-
dimensional dislocation density as the differen-
tiation of four-dimensional distortion :

D'=dB'. 13
(The strict deriving of (13 is done by comparing
the form numbers of the distortion and the dis-
location. See Yamasaki and Nagahama (1999 b).)
From (1) and (12, the concrete form of (13 is given
by

I'NdT+a'=(dsy'—6:8Y) NdT+dsp (14)
where d =dt N\0;+ds and ds is the differentiation
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of space. By comparing coefficients, (13 is divid-
ed into the spatial component and the time com-
ponent :

a'=dsp' (15)

I'=dsV-0,8. (16)
Because the differentiation of 1-form corre-
sponds to the rotation in vector analysis, (15 is
another expression of (0. Dislocation current is
given by the product among scalar density, dis-
location velocity and Burgers vector. Therefore,
it is understood that the special one that the
gradient of the velocity is disregarded in (16)
corresponds to Owowan’s formula (1). That is,
Orowan’s formula is nothing but the equation
that looks at the physical expression of Cartan’s
structure equation from time base.
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