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Introduction

In this paper, we explain the di#erential ge-

ometry description of continuum mechanics

paid attention by theoretical geosciences in

recent years (e.g., Yamashita and Teisseyre, +33.

; Teisseyre, +33/ ; Takeo and Ito, +331 ; Yamas-

aki and Nagahama, +333 a ; Nagahama and Tei-

sseyre, ,**+). To explain the theory concisely,

we do not expand the general frame of the

theory. Instead, we take up the concrete phe-

nomenon described by the well-known equation

such as the rheology of rocks described by

Orowan’s formula :
.
e�rbv �

where e is strain, r is scalar density of disloca-

tions, b is Burgers vector and v is velocity of

dislocations. The purpose of this paper is to

derive Orowan’s formula from a viewpoint of

the di#erential geometry.

Di#erential geometry description

of defect field

One of the most famous correspondences be-

tween continuum mechanics and di#erential ge-

ometry is the definition of strain that is given by

the di#erence of metric tensors : eij�(dij�gij)/,.

It has been a center problem in di#erential ge-

ometry analysis of continuum mechanics to

extend this correspondence even to the defect

field. In this section, we explain concisely this

result by considering the virtual circuit in crys-

tal lattice.

Consider the closed curve : A�B�C�D�A,

where A�A(u), B�A(u�du), C�A(u�du�du�
ddu), D�A(u�du) and ddu�ddu (Fig. + (a)). We

map point A to the Euclid tangent plane in point

C along the curve : A�B�C as follows

A�dA�d�A�dA�.
A�B B�C

Next, we map point A to the Euclid tangent

plane in point C along the curve : A�D�C as

follows

A�dA�d�A�dA�.
A�D D�C

Therefore, when we map point A to the Euclid

tangent plane in point A again along the closed

curve : A�B�C�D�A, we obtain (Fig. + (b))

A�dA�d�A�dA���A�dA�d�A�dA��
A�B�C C�D�A

�ddA�ddA�DA. �
Now, when the base vector is set to be Ai, we

obtain dA�Ai dui. Because dAi is also vector and

dAi�* for dui�*, it can be expand by using base

vectors as follows : dAj�G i
jk duk Ai, where G i

jk is

a$ne connection. In this case, � becomes

DA�ddA�ddA�d�Ai dui��d�Ai dui�
��ddui�G i

jk duj duk�Ai��ddui�G i
jk duj duk�Ai

��G i
jk-G i

kj�duj duk Ai.

Because G i
jk�G i

kj in Euclid space (or Riemann

space), the discrepancy, DA, is zero. On the other

hand, in the space with torsion, we have G i
jk�

G i
kj�,G i

[jk]�,Si
jk�*, where Si

jk is called torsion

tensor. Therefore, the discrepancy is expressed

as

DA�Si
jk emjk dSm Ai �

where d�m (�emjk duj duk/,) is infinitesimal area

enclosed with closed curve. ekmn is Levi-Civita

tensor. We have ekmn�* whenever two of the

indicies coincide, and otherwise is given by ekmn

�	+ if sgn (k, m, n)�	+. For instance, e++,�*, e+,-

�+ and e+-,��+. The discrepancy vector in the

direction of l is given by

DA�Sl
jk emjk dSm. �

In crystal lattice, we can obtain similar dis-

crepancy called Burgers vector. The curve that

closes in a perfect lattice (Fig. + (c)) does not

close in the lattice where the dislocation exists

(Fig. + (d)). (When strictly saying, the discrepan-

cy is defined by the naturalization in which

non-Euclid material space with dislocations is

mapped to Euclid material space without dis-

locations (Fig. ,).) This discrepancy increases in

proportion to the dislocation density and the

area enclosed with the curve. Therefore, Bur-

gers vector, bl, is given by the product of disloca-

tion density tensor, aml, and infinitesimal area
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enclosed with the curve, dsm :

bl�aml dsm. �
First and the second index of aml is the direction

of dislocation line and Burgers vector, respec-

tively. Therefore, if l�m, aml is a screw disloca-

tion density, and if l�m, aml, is an edge disloca-

tion density. From the comparison between �
and�, we can obtain the relations such as DAl�
bl, Sl

jk emjk�aml and dSm�dsm. In a word, the

dislocation density is expressed geometrical by

the torsion of the material space.

Geometrical description of dislocation density

was derived by the mapping of the point. Next,

we consider the mapping of the vector (Fig. - (a))

in order to derive the geometrical description of

disclination density. Here, a disclination is a

generic name of rotating defects (a dislocations

is a generic name of translational defects.). By

the similar procedure to derive �, we have

DAj�ddAj�ddAj�Ri
jkh duk duh Ai �

where Ri
jkh (�(h G i

jk�(k G i
jh�G l

jk G i
lh�G l

jh G i
lk)

is curvature tensor (Fig. - (b)). In crystal lattice,

we can obtain similar discrepancy of vector

called Frank vector. In the parallel shift in the

perfect crystal, the direction of the vector turns

to the same direction in the starting point and

the terminal (Fig. - (c)). On the other hand, it is

not for the same direction when the disclination

exists (Fig. - (d)). This discrepancy of the vector

direction is called Frank vector. This discrepan-

cy is proportional to the disclination density and

the area of the closed surface as well as the

Burger vector. In addition, it is also proportion-

al to the size of the vector. Then, we have

fj�qj
im Ai dSm �

where fj is Frank vector, qj
im is disclination den-

sity. From the comparison between � and �,

we have emkh Ri
jkh�qj

im, that is, the disclination

density is expressed geometrical by the curva-

ture of the material space. In the ordinal analy-

sis, the degenerated disclination density, eiml qj
im

�qjl, is used.

Neither the dislocation density nor the dis-

clination density are independent as known in

the analysis of the liquid crystal. Next, we

consider what kind of form the relation should

be. The point of the above-mentioned analysis

was to have expressed the physical quantities

such as dislocations and disclinations by the

geometrical quantity such as torsion and curva-

ture of the material space. The curvature and

the gradient of the torsion are in not independ-

ence but the following relations :

Ra
[bcd]�([b Sa

cd] �
where we ignore the higher order terms of the

a$ne connection. � is called the first Bianchi

identity that is one of the basic relation in the

di#erential geometry. The substitution of Sa
cd

ebcd�aba and ebcd Ra
bcd�qb

ab into � leads to

qb
ab�(b aba. �

This means that the divergence of dislocations

Fig. + (a) Consider the closed curve ABCDA in the space

with torsion. The area enclosed with this closed curve is

infinitesimal enough, and we set AB�CD�d and BC�DA

�d. (b) When this closed curve is mapped to the Euclid

space, it does not close as shown in this figure. This is a

result of the path dependency in the space with torsion,

that is, the mapping result is di#erent according to

whether the path ABC passes or the path ADC passes even

if the destination is the same point C. (c) In the perfect

crystal where the dislocation does not exist, the closed

curve can be drawn in an arbitrary region. (d) When the

dislocation exists, there is a region where the closed curve

cannot be drawn. This quantity of the discrepancy is

called a Burgers vector.

Fig. , Consider the material space with a dislocation.

First, take out the element that is small enough to be free

from the dislocation. Second, the element is transformed

elasticity to the eigenstrain-free state by cutting o# from

the surrounding and releasing it from the constraints of

the surrounding. Finally, we reconstruct the material

space by using these eigenstrain-free elements. This

virtual process is called naturalization. Geometrically, this

process is equivalent to the mapping of the non-Euclid

space with torsion into the Euclid space. Burgers vector is

defined as the discrepancy due to the naturalization.
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is accompanied by disclinations. Disclinations

does not exist in the ordinal material, so we have

the well-known preservation law of the disloca-

tion : (b aba�*. Note that � is only the physical

expression of the basic relation in di#erential

geometry �.

Orowan’s formula and Cartan’s structure equa-

tion in Four-dimensional material space

The first Bianchi identity� can be derived by

the Cartan’s structure equation. Abstract ex-

pression of this equation is

�torsion tensor���di#erential operator�
�metric�.

Because the torsion and the metric corresponds

to dislocation density and strain, this becomes

aij�eikl (k bl
i. �

For detailed proof, refer to Yamasaki and Nag-

ahama (+333 b) etc. � mean that the dislocation

density is given by the rotation of the strain. If

the distortion is integrable, it is given by the

gradient of the displacement, then we have aij�
eikl (k (lui�*, that is, the dislocation density van-

ishes. In other words, the dislocation density is

given by the non-integral term (non-holonomy

term) of the strain. In the same way, the dis-

clination density is given by the non-holonomy

term of the bend-twist that is the gradient of

rotational displacement. (In Taylor-Bishop-Hill

model, all the non-holonomic terms vanish.)

Because � is the basic equation in describing

dislocation field, it plays an important role in

condensed matter physics (e.g., Edelen and Lag-

oudas, +322 ; Kleinert, +323), seismology (e.g.,

Yamashita and Teisseyre, +33. ; Takeo and Ito,

+331) and geodesy (e.g., Yamasaki and Nagah-

ama, +333 a). However, � does not include the

e#ect of time, so we cannot derive the evoluti-

onal equation such as Orowan’s formula �.

Then, in this section, we try to add time base to

the coordinate system where the dislocation

field is described. As known by special theory of

relativity, if the velocity of light is multiplied by

time base, it becomes the dimension of the space,

so the spacetime can be described as the four-

manifold. Similarly, by multiplying the velocity

of elastic wave by time base in the material

space, the four-dimensional description of defor-

mation field becomes possible. In the dislocation

field, the dislocation current corresponds to the

velocity, so we have

Di�Ii�dT�ai ��
where Di is the four-dimensional dislocation ,

-form, Ii(�Ii
A dxA) is the dislocation current +

-form, ai(�ai
A dSA) is the dislocation density ,

-form and� is the wedge product. In this paper,

we do not go deep into the explanation of the

di#erential formalism. For detailed proof, refer

to Edelen and Lagoudas (+322). In the same way,

we can define the four-dimensional distortion

(strain) :

Bi�ni�dT�bi ��
where Bi is four-dimensional distortion +-form, ni

is the velocity *-form and bi(�bi
A dxA) is the

distortion +-form. It is followed from� that the

di#erentiation of distortion is accompanied by

the dislocation density. Then, we derive four-

dimensional dislocation density as the di#eren-

tiation of four-dimensional distortion :

Di�dBi. ��
(The strict deriving of �� is done by comparing

the form numbers of the distortion and the dis-

location. See Yamasaki and Nagahama (+333 b).)

From�� and��, the concrete form of �� is given

by

Ii�dT�ai��dS ni�(t bi��dT�dS bi �	
where d�dt�(t�dS and dS is the di#erentiation

Fig. - (a) Consider the parallel shift of the vector along

the closed curve in the space with curvature. (b) When

this closed curve is mapped to the Euclid space, the

parallel shift of the vector is accompanied by the

discrepancy in the terminal point. (c) In the parallel shift

of the perfect crystal where the disclination does not exist,

the direction of vector turns to the same. (d) When the

disclination exists, the direction is not the same. This

discrepancy of the vector direction is called a Frank

vector.
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of space. By comparing coe$cients, �� is divid-

ed into the spatial component and the time com-

ponent :

ai�dS bi ��
Ii�dS ni-(t bi. ��

Because the di#erentiation of +-form corre-

sponds to the rotation in vector analysis, �� is

another expression of �. Dislocation current is

given by the product among scalar density, dis-

location velocity and Burgers vector. Therefore,

it is understood that the special one that the

gradient of the velocity is disregarded in ��
corresponds to Owowan’s formula �. That is,

Orowan’s formula is nothing but the equation

that looks at the physical expression of Cartan’s

structure equation from time base.
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