Abstract: Crustal fluids are the aqueous solution of salts (NaCl, KCl, CaCl₂ etc.) and gasses (CO₂, CH₄, N₂ etc.), most commonly a H₂O-CO₂-NaCl system. However, we have little information on their thermodynamic properties and the equations of states (pressure(P) - volume(V) - temperature(T) relation) at high CO₂ concentration and salinity under the conditions up to 200 MPa and around 400°C, where water-rock interaction is significant. We developed a new experimental apparatus that can control P and T independently up to 200 MPa and 500°C to measure V continuously.

We experimented for pure water over the T range up to 400°C at 100 MPa, and CO₂ up to 200°C at 30 MPa and 100 MPa, and examined the performance of our new apparatus by comparing the experimental data with those from SUPCRT92. The experimental data for the pure water are well consistent with SUPCRT92 within 1% of error, while the data for CO₂ deviate 20% at maximum from SUPCRT92. A main cause of the deviation is likely to be attributed to the overestimation of T by about 30°C or less. We will accomplish the apparatus in the near future as an innovative experimental tool.

Key words: crustal fluid, equation of state (EOS), P-V-T, NaCl, CO₂, continuous measurements

はじめに

沈み込みスラブの脱水反応により、ウェッジメントルと地殻中には殆ど流体が供給されており、その大部分の温度・圧力領域（1200℃・数 GPa）では亜臨界から超臨界状態になっている。供給された流体は地殻中を上昇し、深さ 15 km あたりで帯層を形成しているらしい。地殻流体は NaCl, KCl, CaCl₂ などの塩類と CO₂, CH₄, N₂ などのガス成分で特徴付けられ、主要な溶質は CO₂ および NaCl である。水-岩石相互作用、流体の物質移動や相変化などは、地質学的现象において重要な役割を担ており、それらを理解するためには任意の温度・圧力状態における流体の挙動を知る必要がある。広い温度・圧力領域に渡る流体の状態方程式は、これらを理解するための最も重要なツールのひとつである。現在最も広く使われている熱力学解析プログラムは、SUPCRT92 (Johnson et al., 1992) である。このプログラムは、様々な種類の物・ガス・溶質イオンの標準状態の熱力学量、および0.1〜500 MPa・0〜1200℃の広範囲に渡る溶質と溶液の反応を計算することが出来る。しかしながら、溶存イオン（OH⁻, Na⁺, HCO₃⁻など）においては、密度 0.35 g/cm³以上、温度 350℃以下または 400℃以上、圧力 100 MPa以下の範囲でしか計算することが出来ない。つまり我々は、精密点近傍で純水のモル体積以外の熱力学量を正確に見積もることが出来ないので、熱水-岩石系においてさえ、超臨界域ではその相互作用を解析出来ないので、これは、様々な溶存イオンを含む流体において、水溶液の精密点近傍での P（圧力） - V（体積） - T（温度）データの不足によるものである。

H₂O-CO₂-NaCl 系について最も広範囲にわたる実験的研究は、Gehrig (1980) によって行われた。彼はオートクレープを使用し、H₂O-CO₂-6wt.%NaCl に関して 300 MPa・560℃までの範囲でモル体積および 2 相分離境界を決定している。また、10wt.%NaCl で最大 12 mol.%CO₂ および 20wt.% NaCl で最大 7 mol. % CO₂ の流体についても、わずかではあるが体積変化も測定している。この実験データは MRK（Modified Redlich-Kwong）状態方程式（Bowers and Helge-
実験装置の概要

流体の P-V-T の関係は、いずれか 2 つのパラメータを変えるときに得られる残り 1 つの変化を測定して求められる。これまでのオートクレープや流体の在有物を用いた測定では、体積一定下で高圧または温度を変化させ、その時の相変化と P-V-T の関係を得ている。しかし、これまでにも述べたように、これらの測定方法は相変化を視覚的に決定できるという利点がある反面、多数のデータを能率的に得ることができないことなどの欠点がある。それに対し、我々の新実験装置開発のコンセプトは、流体の圧力と温度を独立にかつ小さな増分で変化させ、対応する体積を測定できるようにすることであり、相変化を体積変化の温度または圧力微分から決定しようという考え方である。

高温・高圧環境を実現・御填するために、東北大学理学部に設置されたガス圧式 3 軸変形試験機（島津製作所製本体式 3 軸変形試験機を株式会社エス・イイが改造）を用いた、その圧力容器内に、流体を封入するための ニミ・ピストンシリンダーシステムを設置し、CO₂注入装置をガス圧式 3 軸変形試験機の間隙圧イオンに接続した（第 2 図）。ニミ・ピストンシリンダーシステムは、ピストンシリンダー、ヒータ、温度測定のための 2 本の熱電対、体積測定のための差動トランスから構成される（第 3 図）。圧力容器内から電気信号を取り出すために、各センサをフィードスクリーニングに接続した。P-V-T の電気シグナルは、LabView ver.6.1（日本ナショナルインスツルメント株式会社）を使用して PC に同時収録する。各装置の詳細を以下に述べる。

1. ガス圧式 3 軸変形試験機

既設のガス圧式 3 軸変形試験機の基本性能は以下の通りである。

封圧：最大 200 MPa（圧力媒体は Ar ガス）
温度：最大 800℃
間隔圧：最大 200 MPa

封圧は、1 段階目の増圧器で最大 80 MPa、2 段階目で最大 200 MPa まで増圧でき、微調整バルブを使用することによって 0.1 MPa の精度で制御可能である。なお、本試験器は軸荷重を載荷して岩石等の試料の変形を試験するものだが、本研究においては軸荷重を載荷せず、ピストンを固定しておく。サンプルを加熱するヒータは上下 2 つのユニットから成っており、加熱過程をプログラムすることによって、それぞれ独立に制御できる（増田ほか、2005）。ガス圧式 3 軸変形試験機の在来仕様では、2 本の熱電対がサンプルの上下に設置され、圧力容器から直接引き出されており、熱電対をフィードスクリーニングに接続することによって、圧力容器内部の任意の箇所の温度を測定できる

第 1 図 H₂O-CO₂-NaCl 系の実験データの適用範囲。region 1: 実験データが豐富で理論値ともよく一致する。region 2: データが散点的で理論値との差が大きい。region 3: SUPCRT92 を適用できない。C.P.; 純水の臨界点。
2. ミニ・ピストンシリンダーシステム
サンプル流体を封入するミニ・ピストンシリンダー
システムを新たに開発した（第 3 図）。シリンダーの内
径は 20 mm で、最大 15 cc のサンプル溶液を封入でき
る。熱膨張によるシリンダーの容積増加は 500°C で約
1.69 × 10^{-4} cc であり、これは最大容積の 0.001% の
で無視できる。ピストンはサンプル流体の体積変化に
追随して動かして上下動する。ピストンとシリンダー
の間には O-リングを設置しているが、摩擦抵抗は、O-
リングの摩擦係数から見積もりとピストンを作用
する圧力に換算して約 0.02 MPa である。これは実験
時の封圧に比べて十分に小さいので無視できる。ピス
トンは、差動トランスのコアを兼用するため、高透磁
率の 78-パーマロイを使用した。ただし、パーマロイ
のキュリー点はおよそ 450°C であるため、低温に保た
れるピストン下部のみを使用し、上部には真鍮を使用
した。シリンダーの内面、及びピストンの側面は鏡面
仕上げし、流体との反応を防ぐために金メッキをして
ある。

CO₂注入装置で注入した CO₂の逆流を防ぐため、シ
リンダーの上部にゴム製の逆止弁を設置した。様々な
材質・形状の逆止弁を作成したが、ゴム製の逆止弁の
シール製は完璧である。しかし、耐熱温度が 200°C な
ので、シリンダー上部に新たに冷却装置を追加した。
その結果、シリンダー上部の温度が 500°C であって
も、逆止弁付近は 60°C 以下に保たれるようになった。

3. 温度測定系
2 台のヒータユニットそれぞれの上部に相当するシ
リンダー側面に熱電対を 2 本ずつ設置した（第 3 図）。逆
反射材料は、流体サンプルの最上部で、及び体積が
最大になった時の最下部に対応する。ミニューシリンダー
の温度を均一化することは最も重要な実験条件の一つ
であるが、封圧基板である Al ガスの対流は温度分布
を均一化する。シリンダーとヒータの間に熱材（シリカウール）を詰めることによって対流を多少防止でき
るため、完全に均一な温度を実現することは困難であった。しかし、冷却装置を追加することで
シリンダーの上部から効率的に冷却されるため、2 台の熱電対の温度差を 1% 以下で保持できる
ようになった。

シリンダーの側面の温度が流体サンプルそのものの
温度であるとは限らないので、直接シリンダー内部の
温度を測定したいところだが、今のところ技術的に困
難である。そこで、純水をサンプルとして P-V-T を測
定した。圧力と圧縮性を正確に測定されているものと仮
定し、シリンダー側面での温度 T₁を既存の状態方程式（Saul や Wagner, 1989）からの温度 T₁と
比較した。その結果、T₁は以下の式で補正されことが
分かった。

\[ T_1 = 9.0 \times 10^{-4} T_0^3 + 0.40 T_0 + 35 \quad R^2=0.93 \]  (1)

この温度補正の再現性は大変良好であった。

ミニューシリンダーシステムの上部はヒータ
によって熱せられるため高温になる。一方、下部は熱に弱い差動トランスの設置部になっている。両者の間を金属プレートで遮蔽しても、下部で150℃にも達してしまう。そこで、金属プレートとヒータとの間に銅製の放熱板を配置した（第3図）。下部を100℃以下に保つことができた。実験中の差動トランスのコイルの温度はサーミスタで測定している。この値は差動トランスの出力値を温度補正するのに用いる。なお、放熱板は熱電対をシリンダーに固定する役割も担っている。

4. 体積測定系

流体サンプルの体積変化は、ミニ・ピストンシリングダーシステムのピストンの上下動を差動トランスで検出しことによって測定する。差動トランスは1つの1次コイル、2つの2次コイル、及び金属コア（バーマロイ製のピストン下部で、その長さはひとつの2次コイルの長さと等しい）から成しており、1次コイルに交流を加えると、コアの位置によって2次コイルに生じる誘導起電力が変化するので、その電圧値からコアの変位を高精度で測定できる装置である。本実験は高温・高圧下で行い、設置スペースと制限されていることから、既製品を使用することができない。そこで我々は差動トランス自作し、ピストンの位置と2次コイルの出力電圧との関係を得ることでこの問題を解決した。

本来、差動トランスの2次コイルは対称に巻かれるが、出力電圧はピストンの下面が2次コイルの中間点で極小となり、電圧の変化率がゼロとなるのでピストンの位置の測定精度が落ちてしまう（第4図a）。そこで、位置と電圧との関係の線形性は犠牲になるが、一方の2次コイル位置を片側に偏らさせることによって、測定範囲内で極小値を持たないようにした（第4図b）。手製トランスの特性を知るために、常温・常圧下でコアの位置を50μmずつ（設計上の許容変位量の0.1％に相当）動かしながら出力電圧値を測定し、測定值を多項式に回帰したところ、14次多項式で全ての変位量測定値の誤差が5μm以下になった。

差動トランスには圧力・温度依存性がある。圧力依存性を調べるため、ミニ・ピストンシリングダーシステム全体をガス圧式3軸変形試験機の圧力容器内にセットした。ただし、ミニピストンだけは挿入していない。温度が一定に保持されていることを確認するために、サーミスタをトランスの側面に取り付けた。段
5. CO₂注入口

NaCl水溶液をミニ・ピストンシリンダーシステムに
封入するのは容易だが、常温・常圧でのCO₂の溶解度
は非常に低いため、従来の研究でも、これを多量に、か
つ高精度でいかに封入するかが大きな問題であった。

広範囲にわたる温度・圧力条件下での純水やNaCl
水溶液に対するCO₂の溶解度に関しては、多くの実
験的研究（Takeouchi and Kennedy, 1964, 1965,；
Gehrig, 1980など）と理論的研究（Duan et al., 1992a, 1992b; Duan and Sun, 2002）が行われている。これ
らの研究によれば、常温でも10 MPa以上の溶解度が
急激に上昇するので、高濃度CO₂水溶液を作成するに
は、高圧にしたCO₂をミニ・ピストンシリンダーに封
入した高圧のNaCl水溶液中に注入しなければなら
ない。我々はそれが可能なCO₂注入口装置を新たに開発し
た（第7図）。

CO₂注入口装置は、CO₂ポンベ（純度95.5%）、増圧
器、油圧式手押しポンプ、およびねじ込み式流量マイク
ロメーターから成っている。手押しポンプと流量マイク
ロメーターは増圧器の1次側に、CO₂ポンベが2次側に接
続されている。2次側は間隙圧ラインを通じ、シリン
ダー上部に設置された弁を通じてミニ・ピストンシリ
ンダーシステムに接続されている。CO₂は手押し
ポンプと増圧器によって最大200 MPaまで増圧され、
流量マイクロメーターを使用してミニ・ピストンシリ
ンダーシステムに注入される。流量マイクロメーターの1
回転は0.6 ccと相当し、さらに1/100目盛の副尺がつ
いている。この装置を使用することによって、高圧の
CO₂注入量を高精度で測定することが可能である。

第5図 差動トランスの圧力依存性。（a）ピストンを取り外した
ミニ・ピストンシリンダーシステムを圧力容器にセットし、圧力を
段階的に増加させる。圧力は断熱圧縮により一時的に温度が上昇
するが、十分な時間後に流体の粘性を失い、その後の圧力
変化が、圧力の効果を受けた値である。（b）(a)のデータを圧力
に対してプロットし実験直線を成した。圧力依存性は、200 MPa
では13 mVであり、それはピストン変位の約2 mmに相当する。

第6図 差動トランスの温度依存性。ピストンを様々な変位に
固定したミニ・ピストンシリンダーシステムを圧力容器内に
セットし、温度を変化させた。常温と500℃での出力電圧の差
は、ピストンの変位で2 mm以上に相当する。出力電圧と温度
の関係から、差動トランスの温度依存性を正確に推定できる。
注入された CO₂の量は、以下の 2 つの方法を用いて追認できる。1）所定量注入後に流量マイクロメータを初期位置に戻すと、CO₂圧力は注入した量相当分だけ減少するので、注入前の CO₂の圧力差から計算できる。2）注入時のミシンシリンダー内の温度、圧力、及び Duan and Sun (2002) による CO₂の水や NaCl 水溶液に対する溶解度から計算できる。これらの方法による計算値と流量マイクロメータの値を比較した結果、流量マイクロメータを 1 回転させて 0.6 cc を注入した時、上記 1）による計算値は 0.516 cc、2）による計算値は 0.507 cc であった。同様に 1/2 回転では、0.269 cc および 0.262 cc、1/4 回転では 0.142 cc および 0.133 cc であった。この結果から、実際に注入される CO₂の量は流量マイクロメータから読み取った注入量の約 90% 程度になっているものの、注入量は流量マイクロメータの回転量に比例しており、我々の開発した CO₂注入装置が極めて優れていることを確認した。

実験結果 SUPCRT92 との比較

純水や CO₂に関しては、既に高精度の P-V-T データが得られているので、我々の装置の性能を検定する上で最も適した流体である。今回は最も広く利用されている熱力学解析プログラム SUPCRT92 を用い、我々の装置で得られたそれぞれの流体の P-V-T 関係の精度を検討した。

純水を用いた実験では、あらかじめミシンシリンダーに純水約 7 cc を封入し、真空引きを行って純水中に溶解しているガス成分をシリンダー内に残っている気泡を取り除いた。これを圧力容器内にセットし、100 MPa 一定で温度を 500℃ まで変化させ、その時の V-T を第 8 図 a にプロットした。図からわかるように、実験値は SUPCRT92 による計算値に 1% 以内の精度で一致している。この 1% の差は、ピストン変位では 50 μm、温度では 10℃ 以下に相当するものであり、どちらも測定誤差範囲内である。温度測定系の項でも述べたように、シリンダー内部の温度補正は純水の状態方程式を基準として行っているので、この実験結果は当然であり、実験の再現性を確認したことになる。

CO₂を用いた実験では、ピストンを上げた状態のミシン・ピストンシリンダーニュースを圧力容器にセットし、封圧を 10 MPa 程度まで上げた。その後、CO₂注入装置を用いて所定量の CO₂を注入し、30 MPa と 100 MPa の圧力下でそれぞれ温度を 200℃ まで変化させた。実験では、すべて同一サンプルで行っている。実験結果を第 8 図 b に示す。どちらの場合も、常温では SUPCRT92 による計算値とよく一致する。しかし、30 MPa 下での実験では 60℃ 付近まで
は体積の増加が少なすぎる。90℃以上では計算値の体積増加率にほぼ一致するものの、同一条件下での4回の実験値に食い違いが生じている。100MPaでの3回の実験のうち、80℃以下の実験では全温度領域でSUPCRT'92による計算値にほとんど一致するが、80℃以上の2回の実験では一方で5%程度であるものの、もう一方では最大20%のずれが生じている。

今後の改良点と結論

1. 我々は、地殻流体のP-V-Tを連続的に測定できる装置を新たに開発した。この装置は精度良くCO2を封錠することができ、流体のP-V-Tを高精度で連続的に直接測定することができる点で優れている。

2. 純水およびCO2を用いてSUPCRT'92による計算値と比較することにより、その性能を検討した。純水のP-V-T関係については、常温から500℃までの領域で1%以内の再現性が確認できた。

3. しかし、CO2に関しては低温領域ではほとんど膨張せず、高温領域では計算値と似た体積膨張率を示すものの、実験値の再現性に乏しい。

4. 上の事に関して考えられる原因は、i) ビストンが滑らかに上下動していなかった、ii) 期待通りにサンプル流体の温度が上がっていない、のどちらかであろう。もし、サンプルの温度が上昇しているにもかかわらず、ビストンが下がらないとすれば、流体の圧力は数百MPaにも達してシリナーが大きく変形してしまう。しかしながら、実験後のシリナーにそのような痕跡を認めることは出来なかったので、i)の原因は考えにくい。従って、SUPCRT'92による計算値との差は、流体の温度がシリナー外壁で測定された温度から補正された値よりも低い可能性がある。

5. 温度測定系で述べたように、測定された温度は補正式で補正されているが、それでもなお流体の真の温度を表していないかもしれない、この問題を解決するために、流体の温度を直接測定すべきであるが、現在この技術的問題を検討中である。より精度を向上させるためには、圧力・温度に依存しない変位計の開発などの改良が必要であり、現在検討中である。本装置が完成すれば、これまで不明瞭だった臨界点近傍でのP-V-Tの関係を、0〜100 mol.% CO2および0〜40 wt.% NaClの広い濃度範囲に渡って、高精度・連続計測することが可能となる。

謝辞

既存の圧力3軸変形試験機をガス圧式に改造する際には、京都大学の嶋本利彦氏、産総研の増田善治氏などに御協力を頂いた。株式会社エス・イーの井料兼一氏と小椋昭氏には、実験装置について数多く

の助言・ご協力を頂いた。広島大学の星野健一氏には、熱力学量解析の基礎をご教授頂いた。査読者の増田善治、土屋範芳、清水以知の名氏からは貴重なコメントを頂いた。以上の方々に深く感謝します。

文献


and reactions from 1 to 5000 bar and 0 to 1000°C. Computers Geosci., 18, 899–947.